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A joint consideration of the basic kinetic equation of DTA (Borchardt-Daniels method) and
of the mathematical conditions for characteristic points of the DTA curve (Kissinger method)
results in a system of three equations with three unknowns (kinetic constants). By solving this
systemn, one can obtain formulae for the calculation of kinetic constants from any single point of
the thermoanalytical curve. Rules are given for determining the characteristic and particular
points in the DTA curve. The concept of the mean heating rate of the sample is introduced and a
graphical method is described for its determination. The relationship between the fraction
unreacted at the characteristic point (the shape of the peak) and the order of reaction is
established. The dehydration reaction of copper sulphate pentahydrate was studied by the
gradientless DTA method and good agreement was found between the kinetic constants
determined with different computation methods.

The papers by Borchardt and Damels [1] and by Kissinger [2] occupy a
particular place in the theory of DTA. In [1] the model of the gradientless sensor of
the DTA instrument was introduced for the first time into the theory of the method,
and a practical implementation of this model was developed for liquid samples,
thereby founding gradientless calorimetry. In [2] the characteristic points of the
thermoanalytical curve were considered systematically for the first time and the
possibility of their utilization for kinetic analysis was demonstrated. The above
papers, however, could not provide a comprehensive view of the fundamental
theoretical and practical problems of the method, and need further development
and an increase in accuracy. In particular, the theory of Borchardt and Daniels
makes use of very many approximations regarding heat exchange conditions in the
sensor of the instrument and also regarding the nature of the reaction studied, and
for this reason has limited applicability. The absence of the concept of characteristic
points in this theory renders it incomplete to a certain extent. As to Kissinger’s
theory, it contains a number of erroneous statements, as will be demonstrated in the
following. These, however, do not affect the main resuits and can easily be corrected,
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558 SHISHKIN: REACTION KINETICS

after which it turns out that the two approaches [1] and [2] are not unrelated, but
can readily be united into a single kinetic theory of DTA. The combined theory
discussed below is applicable to a sensor with a thermally insulated sample holder,
approaching in its parameters the gradientless model described in [ 1] and in earlier
papers [3, 4].

The absence of temperature gradients in the sample holder with the sample allows
a description of the thermal balance of the cell by the equation

d4dH dT

—+Cqy = ~KAT = —K(4Ty+4T,) )

dAH . . . .
where is the heat absorption rate of the reaction; C is the overall heat capacity

aT .
of the holder and the sample; - ¢ is the rate of temperature change of the

sample; K is the heat transfer coefficient of the cell (a calibration constant of the
instrument); AT is the differential temperature, equal for DTA without reference
sample to the temperature change over the thermal barrier of the cell; 47 is the
constant component of this temperature change when the linear heating regime is
reached; and AT, is the additional temperature, i.e. the deviation of the temperature
from the linear regime as a result of the reaction, equal to the height of the DTA
peak. Before the reaction starts:

AT = ATy = —1d, )]

where 7 is the time constant of the cell, 1 = — = const.; and @, is the heating rate of

C
K
the block. During thereaction, 4 Ty = A Ty, =— 1P, Where &, is the hypothetical heat.
ing rate of the sample [5]; 4Ty, is the baseline of the reaction from which the addi-
tional temperature 47, is counted. If © = const., then @, = &, and ATy, = —19,.

To change over from the rate of heat absorption to the rate of reaction, let as

assume that

d4H do

a5 " AHg 3

where « is the fraction reacted (conversion); 4H, is the overall heat of reaction. It
follows from Egs (1), (2) and (3) that

®=d,— .2 @)

Let us integrate Eq. (1) from the start of the reaction to the moment ¢:

t H

AH = ——KgA’I;,dt+C(0ot-—C£<pdt )
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SHISHKIN: REACTION KINETICS 559
or
—A4H = KA+CA4T, (5a)
where A is the peak area in the DTA curve, and 4T, is the peak height.
A more general kinetic equation of DTA, than Eq. (5a) can be obtained by

t

introducing Eq. (4) into Eq. (5) and expressing the term gA’I;dt in the form

H t t

Pot’
— ATdeZT— ‘P,,dtdt (5b)

0 o 0

After the necessary transformations, one obtains
[ 4 t tt
~AH,j'adt=CjA’I;,dt+KjjAT,,dtdt 6
1] 0 00

Successive differentiation of Eq. (6) yields

t
—AHg = K [ AT, dt+ CAT, = KA+ CAT, )
0
da dAaT
_an % — kaT 184
H = KAT,+C< (8)
A« dAT, _d24T.
_ CY_k » P
AH, 3 a ¢ ®)

By integration of Eq. (7) between infinite limits, one obtains
—AH, = KA, (10)
Equations (7) and (10) allow one to find « from the data of the DTA curve:

a_KA+CAT,,_A+mT,,
T KA, A

(1)

and the fraction unreacted:

K(4,~A)—CAT, A,—A—14T,

1—0) =
(1=2) KA, 4,

(12)

Assuming that, similarly to the assumptions in [1] and [2], the rate of reaction is
described by an equation of the form

d
?1% = K, exp(—%)(l—a)" (13)
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560 SHISHKIN: REACTION KINETICS

one finds that
da (KA 7 +c%4%
t dt

M P (KA')R i
K, exp = d =
0 TRT) (= [K(A,— A)—CAT,]"

= B(n) (14)

Equation (14) can be expressed in a form better suited for further calculations:

d
E d(: ‘m’“djfp
K eyt = = -
°eXp< RT)( N e A—A—eT, B (13)

where the experimental value B is equal to the rate constant of the reaction
multiplied by the factor (1 —a)"~'. By taking the logarithm of Eq. (14), one obtains
E

InB(n) = nKy— —

o7 (14a)

According to [1], the order of the reaction is found by selecting a value for n at which
1. .
the plot in B(n) versus T represented by a straight line. From the slope of this line

to the abscissa, one can then determine the activation energy E, and from the inter-
cept on the ordinate one obtains the frequency factor of the reaction, K,,.

Equation (14) contains three unknowns: E, K, and n. Besides the described trial-
and-error method, one may attempt to solve a system of three equations with three
unknowns of the type of Eq. (14a) for three different temperatures, i.e. three points in
the DTA curve. If the reaction takes place within a narrow temperature interval, or
changes its parameters during its course, both these methods may prove
insufficiently accurate. The optimum method for such cases would be one in which
the kinetic constants could be calculated for a single temperature, i.e. from the data
for any single point of the DTA curve. For this purpose one must find two more
equations, containing the constants socught for and experimertally measurable
values which, together with Eq. (14a) or Eq. (15), would form a system of three
equations with three unknowns. As will be demonstrated below, the missing
equations can be obtained from the mathematical conditions for the characteristic
points of the differential curve (Kissinger’s method). Let us start our discussion with
the point of maximum rate of reaction, i.e. the m point.

Before utilizing the conditions for the m point, we must determine the position of
this point in the DTA curve.

In Kissinger’s theory it is asserted that the m point is located at the top of the DTA
peak. However, consideration of this question when the main kinetic equations of
DTA, Eqgs (8) and (9), are taken int6 account will demonstrate that this statement is
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SHISHKIN: REACTION KINETICS 561

erroneous. The authors of {6] also arrived at this conclusions, on the basis of
analogous analysis.

Let us perform the construction shown in Fig. 1. The differential curve will be
represented (with an accuracy satisfactory for the analysis) by the function 47,

= sin y; the origin of the system of coordinates will be located at the inflexion point
2

d4aT,
on the initial branch of the peak (i point). Then,—2%

p .
=cosyand ——* = —sin7y;
Sdr de? ’
AT
i dt AT=sing
AT P i
dt? \ e
AY
\
\
iYfo t
A} ['
h \ /
\\ /
\\ ’I\
=

Fig. 1 Idealized DTA curve and distribution of the characteristic poiits in it: i — inflexion point; m —
point of maximum rate of reaction; i, and i, — points of maximum positive and negative
acceleration of the reaction. In the lower part: transformed DTA peak described by Kissinger's
theory

the plots corresponding to these functions are also presented in Fig. 1. Let us write
the conditions for the inflexion point:

d
(a)( =

and for the point of maximum rate of reaction:

dAT,
doy KA +C< dt >’" g2
(a)(§>m— KA, = max; (b)<dt2),,. 0 (17

d?a dar, d*4T,
A (dT) ( dr ) +(T> =0 s
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It is clear from Fig. 1 that Eq. (18) cannot be satisfied in the section of the curve
. .. . A 24
below the i point or at the i point itself, since here d d;I‘,, >0and d dt’Tp >0 (the sum

of two positive numbers cannot be equal to zero); also, Eq. (18) cannot be satisfied at
2

. . . ,.d4ar .
the p point, i.. at the top of the peak, since at this point ir P = 0, while d dfg;’ <0;

in contrast, in the section of the curve between the i point and the p point, the signs of
d4T, d24T, . .

i ? and v P are opposite, and Eq. (18) can be satisfied if the values are suitable.
The exact position of the m point can be found by utilizing Eq. (17a); for this purpose
one has to construct the relationship between the right-hand side of Eq. (17) and the
coordinates of the point in the curve; the point where the right-hand side of Eq. (17a)
reaches the maximum value will be the m point. In an analogous manner one can
find the points at which the reaction will have maximum positive and negative

acceleration. For these points, the conditions

d%\ [dAT,\. (d%AT,\.
A, (d—t2>11 = <T)II+T(V)11 = max (19)

d%a\ d4AT,\ . d4T,\ .
A, (Ez—)lz = (T)zﬁ-r (7 I, = max (20)

must be satisfied. It may be seen in Fig. 1 that the i, point is located lower than the i
point, while the i, point lies between the p point and the e point, i.c. the end-point of
the reaction.

This end-point may be defined as the point at which exponential decline of the
curve

AT,,:M;exp(— ;) 21)

begins; in this equation, time is counted from the e point on, since from here on the

dAH
dt

the solution of this differential equation, and the DTA curve is its graphical

equation obtained from Eq. (8) at = Qis satisfied. The function (21) is actually

AH
representation. Thus, Eq. (8) with % # 01is valid up to the e point, whereas after

d4H S .
this point, Eq. (8) withT = Qis valid; different functions correspond to these two
equations, and hence at the e point different functions will meet, and the DTA curve

will have a break in continuity, ie. two different values for the derivative
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d4ar

P

will exist: one for approaching the e point from the right-hand side, and the

other for approaching it from the left-hand side: the expression for the first can be
d4H

obtained from Eq. (8) at —— = 0:

dr
4T, 4T,
= "€ 22
(%%).- -2 @)

Consequently, only one inflexion point will appear in the DTA curve. The second
point, which might appear visually to be an inflexion point, is in fact a particular
point of the curve: the continuity break point indicating the end of the reaction. For
this reason, the concept used in [2] for determining the shape index S of the peak is
erroneous. (The shape index is the ratio of the slopes of the tangents to the curve at
the inflexion points on the ascending and descending branches of the peak.) These
tangents should not be drawn at the i and e points, but at the i, and i, points, for

which the condition used in [2] to find the relationship between S and the order of
3

. . o . .
reaction n, ie. — = 0, is valid.
de

The above analysis demonstrates that Kissinger’s error lies in determining the
positions of the characteristic points in the differential curve incorrectly. It is a
consequence, in fact, of his using, the form

d4H

— —— = KAT
ar " (23)
for the DTA equation, and not Eq. (8). However, Eq. (8) can be transformed into the
form of Eq. (23), and the DTA peak transformed correspondingly. After this,
Kissinger’s theory will become fully applicable to the transformed peak. For this

purpose, let us write Eq. (8) in the following form:
AH da d4aT,

— = AT 41—2 = AT
K dt pte dt P

dAT
To find 4T, one must add the term © s £ to the height of the peak; the value of

can be taken from Eq. (22) or from the integral form of this equation, 1 = —; the

d4T,
term ar
which the conditions (19) and (20) are satisfied can be used as base points, as well as
the m point (Eq. 17), the p point, where AT}, = AT,, and the e point, where 4 T,=0.

is found by graphical derivation of the curve. The points i, and i, for
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By connecting these base points by a continuous line, a peak is obtained (shown in
the lower part of Fig. 1) whose area is equal to the area of the original peak, but the
characteristic points #°, i} and i3, i.. the points corresponding to the maximum rate
of reaction and to the maximum positive and negative acceleration of the reaction
coincide with the peak height and with the inflexion points in the ascendmg and
descending branches of the curve, as assumed in Kissinger’s theory.

To obtain one of the equations of the system consisting of three equations, let us
take the derivative of Eq. (13) and make use of the condition (17b);

d?x  da| Eg E ‘
—_— = — 1—g)1! 24
az T di [RTZ Ko ex"( RT)n( %) ] @9
E E
R(;,"Z' K, exp(—r)n(l—oc yt (24a)

where a,, is the fraction reacted at the m point at the temperature of maximum rate of
reaction T,,, and @ is the momentaneous (true) heating rate of the sample at the m
point. Joint solution of Eqs (15) and(24a)resultsin an equation with two unknowns,
E and n:
Eo,
RTZ

= nB, (25)

The third equation of the system is obtained by integrating Eq. (13). For n#1:

1 1 RT? E 2RT
m[a“:.an——l‘l] S "0"*1’( RT)(I—T> 20)

where, for integration of the rate constant, the method of integrating by parts [7] is
applied. The value @ in Eq. (26) is the mean heating rate of the sample in the
temperature interval studied (how to find it is described in the experimental part of

. . 2RT . . . . .
this paper). Neglecting the term 5 which is small in comparison to 1, one obtains

from Eq. (26) for the m point:

E .
ES, _ (- gy 00— _ By ) .
RTZ 1—(1—a,* Cl—(l-a,)! (262)

Equations (15), (24a) and (26a) form the desired system of three equations with three
unknowns. Solving this system for the case @,, = &,, yields

n(l—a,) ! =1 7
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For reactions of the first order, integration of Eq. (13) yields

RT?
—In{l—a) = 7 3 —K, exp( IfT) (28)

. 2RT, . .
where, as earlier, the small term v is neglected. Joint solution of Eqs (28), (25) and

(15) at n = 1 yields at the m point

—In{(l —a,) =1
and hence
=1-e ! =063 (27a)
Joint solution of Egs (27) and (24a) yields at the m point for all values of n
Ee¢ E
m — K I
RTZ = "0 e"p( RT,,,) @)

Equation (27) may be solved for «,,, but not for n. For this reason, n is found by
selection or by the plot representing the relationship

1
o A :(1—-1—>n-1
n

The analysis performed above demonstrates that the m point has the following
important properties: (a) the fraction reacted at the m point is a function of one
independent variable only, namely the order of reaction n. For reactions of the first
order this fraction is equal to the defined value 0.63, i.e. a,, does not depend on the
experimental conditions, nor on the reaction parameters; (b) at the m point the rate

constant of a reaction of any order is equal to ——; this expression may hence be

E®,
RT%’
utilized to find the value of the activation energy, by varying the heating rate. By
writing Eq. (29) for two different heating rates, taking the logarithms of the

equations obtained and solving them jointly, one obtains

2
T, Toy In 22 Im2
02 Tm _ _E (30)
TmZ Tml R
In [2] this equation is found in the derived form
@
In =
T? E
o= 31)

YA
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566 SHISHKIN: REACTION KINETICS

In [2], Eq. (23) does not appear in its explicit form. It is utilized implicitly in two

cases: when the author assigns the point of maximum rate of reaction to the top of
3

the peak, and when he assumes that at the inflexion point — da = (. Equation (23)

dt 3
allows one to obtain formulae for the fraction reacted and for the fraction unreacted
at the point of the curve:
Al A~ A
(@) a= a (b) 1—a= A (32)
where A’ is the area of the transformed peak in Fig. 1. It also allows one to obtain an
equation of the type of Eq. (15):

Ko exp ( — —Ig—f,) Q—ay ! = A:!—TA’ =§ (33)
Since Kissinger, in [2], did not develop Egs (32) and (33), he was compelled to make
use of varying heating rates in order to find E and to introduce the shape index S of
the peak to find n. Thereby, the possibility of determining the kinetic constants at
any point of the thermoanalytical curve was lost, i.e. the task of performing kinetic
analysis by means of this curve was not fully achieved (similarly as in [ 1], where the
concept of the characteristic points of the DTA curve is absent).
The third equation for the system is found by utilizing the mathematical
conditions for the inflexion point of the DTA curve:

()(d”) max (b) (d;‘ff;').:o (4

From Eq. (9) one has

d?4T, A, d%a 1d4T,
o Sl 7oA @3
Introducing Egs (8), (15) and (24) into Eq. (35) and applying the condition expressed
in Eq. (34b), one finally obtains
d4T,
d /)

Eop; 1 a;
—R~,I—,i5 = nBi+;[;—;‘W] = nB;+ . (36)
SRR

where B; is the value of B at the i point, and g; is the experimental value at this point
of the expression in brackets. By solving Eqs (36) and (26) jointly, one obtains
B;+at !

-yt = B ()
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and for a reaction of the first order, from Eqs (36) and (28):

B
1——(1,» = CXp(" W) (38)

Equations (37) and (38) allow one to find the fraction unreacted at the i point as a
function of the kinetic parameters of the reaction and of the experimental
conditions.

The third equation of the system is then found by utilizing the mathematical
conditions for the top of the peak (p point):

(a) (d T) —0()(d2A ),:ma_x

d347, da aT,
o (@) -0 ofa)-%
3

Let us now form the second derivative of Eq. (8) and solve it relative to d d‘:}’:

(39

AT 4, d% 14747,
o Sl 4 40
de’ T df? 1 de? (40)

The second derivative of Eq. (13) yields

3n d_oz Eo da

P _da[ (Ep\,( 2RT\ @’ ([ 1 a7
d® ~ dt| \RT? E (1—a)RT? nf\1—a) |

(41)
_dal [ Ep }, 1Y
‘&7[(1:72) 29 b+ (2 n)n B

At the p point, according to condition (39b) and Eq. (40):

d*a 1 (d%4T,
<EF>" =4 (T) )
Utilizing Eqs (35) and (39a), one obtains from Eqs (42), (24) and (15)

d3« e\ 1 1/da Eop
(F)":(EF)G:?(«)(RTZ "B> (422)

Solving the equation obtained jointly with Eqs (41) and (39d) yields a quadratic
equation in the term E¢/RT,

E(p) Ep 1 1 nB
. 3n B — —\n2R2 P _
<RT,, RT, ( + >+ (2 n)n B+ —£=0 (42b)
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and hence

Eo B
Tz% - -2—”[3n+(rB,,)“i \/n2+2n(er)‘1+(1Bp)_2+4n] (43)
p

Ifp, = ¢, the system of the three equations (43),(26) and (15) can be solved and the

relationship between the order of reaction and the fraction unreacted at the p point
can be found:

_ 2(n—1)
3n+@B,) '+ /n*+2n(1B,) " ' +(tB,) *+4n

For reactions of the first order, let us solve Eq. (43) jointly with Eqs (28) and (15)

atn=1:
1—a = ex (—— 2 ) (45)
P 3+@B,) '+ /5+2tB,) ' +(B,) 2

(I—a)y '=1

A comparison of the formulae for calculating the i, m and p points (Table 1)
demonstrates that the formula for the m point is simplest, and the formula for the p
point is the most complicated, i.e. the simpler (more accurate) the characteristic
point found in the DTA curve, the more complicated (less accurate) the calculation
for that point. The choice between the various possible calculation alternatives will
depend on the individual particularities of the reaction studied (the type of the DTA
curve).

Experimental

To confirm our theory, we used as model reaction the dehydration of copper(II)
sulphate pentahydrate:

CuSO, . 5H,0-CuSO, . 3H,0 + 2H,0
CUSO4 . 3H20—’CUSO4 . Hzo + 2H20

taking place in the above two steps under the chosen conditions. The DTA curve is
shown in Fig. 2. Heating was carried out at a rate of 12 deg/min in nitrogen
atmosphere at a pressure of 25-30 Torr. Analytical grade reagent was used. The
sample (6.0 mg) was placed in a crucible of aluminium foil which was then inserted
tightly into the sample holder, a thin-walled copper bowl (4.4 x 8.0 mm), to the side
of which the thermocouple (wire diameter 0.2 mm) was soldered with silver. The
sample holder was fastened to the thermally insulated wire supports in the cavity of
the heating block (diameter of cavity 10 mm). The sample was lightly compressed
onto the bottom of the crucible; it formed a thin layer in good thermal contact with
the crucible and hence with the sample holder. The holder construction and the
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packing mode of the sample ensure a high degree of isothermalness of the sensor and
centralization of its parameters, so that (from the aspect of the heat transfer theory)
the sensor may be considered a system without temperature gradient and hence the
equations derived above are applicable. The heat capacity of the holder with the
sample, calculated from literature data, is 0.1—0.01J/deg, and the heat transfer

\cll' B b

Fig. 2 DTA curve of the dehydration of copper sulphate pentahydrate 4 — peak area; AT, — peak

14

d4T, h L d4
height; ———d = tana = Yw slope of the tangent to the point in the DTA curve; = tanf
t

dt

— the same for the auxiliary peak

> 8

coeflicient of the cell, determined by electric calibration, is K; = 4.0+0.1 mW/deg
C
at 85° and K, = 4.3+0.1 mW/deg at 115°; hence, 1, = ra =25 s and

1
1, = 23.25 s. These values are in good agreement with the 7 values found by

calculation from the tail branch of the peak in the section sufficiently removed from
the end-point of the reaction, by the formula

11324,

= (46)

where 11.32 s/cm is the reciprocal chart speed and the meanings of 4, and AT, are to
be seen in Fig. 2. Since t = const, in the temperature interval studied, the baseline of
the reaction should be a straight line parallel to the time axis. In fact, as seen from
Fig. 2, after the reaction the curve returns to the same horizontal line from which it
deviated at the start of the reaction.

In agreement with the above equations of reaction, two peaks are observed in the
DTA curve, in the intervals 70-103 and 103-130°, respectively, corresponding to the
two dehydration steps. The heats of these reactions are 84.8 and 53.0 J/mol water,
respectively. Both peaks have continuous, rounded-off tops and end-points
substantially shifted towards the upper part of the tail branch of the peak. This
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indicates a slow end-stage of the process, proceeding in a significant temperature
interval; in contrast, the initial stage of the reaction is rapid, particularly in the
second dehydration step, where the slope of the descending branch is high and the
temperature interval between the beginning and top of the peak is narrow. The
dehydration process of the crystal hydrate may presumably be regarded as
consisting of two stages: in the first, the destruction of the crystal lattice takes place
(using up energy) and the water molecules migrate to the surface of the sample, and
partially into the gas phase; in the second stage, desorption of water from the
surface, i.e. drying, takes place, and the drying process appears extended owing to
the energetic inhomogeneity of the surface and of the water molecules adsorbed on
it.

The results of the kinetic computation and the required initial data are listed in
Table 2 for a series of points in the curve, in the sequence of rising sample
temperature. The data listed are: temperature of the sample, height of the peak,
slope of the peak, area of the peak, momentaneous (true) heating rate of the sample,
mean heating rate, fraction unreacted, activation energy for n= 1, activation energy
for n=1.5, frequency factor, and activation energy calculated by the multipoint
method, i.e. from Eq. (13) in the linear form

da
dt

In d—ay

= —E/RT+In K, @7)

using a programmed computer and the least squares approach. Before discussing
the results in Table 2, let us consider in greater detail the method of determining the
mean heating rate & figuring in the formulae of the theory (Table 1).

Mean heating rate ® and method of its determination

In integration of the rate constant (cf. Eq. 26), it is accepted usage to consider the
heating rate a constant value equal to the given heating rate of the block. However,
the physical meaning of the value figuring in Eq. (26) is not the heating rate of the
block, but the heating rate of the sample (of the space in which the reaction takes
place), which for this reason cannot be considered canstant. If it is removed outside
the integral sign, it turns into a mean rate value, which is difficult to determine by
analytical methods. However, there is no difficulty in finding & by the graphical
method described below.

The integral of the left side of Eq. (26) is a single-value function of a and
consequently of the area and height of the peak (cf. Eq. 11). The equality (26) will not
be destroyed if we exchange the peak A (height AT,) for a peak A’ with height 4T,
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»

and constant slope so as to attain the equality

dt

" A+14T, _ A +14T,
A 4

(48)

However, for a peak with constant slope one may write

da Ko | —grr
Jf(a) 7 Je d

since the heating rate of the sample for such a peak is a constant equal (according to
(50 to
d4T,

i oo (49)

Q=

To construct the auxiliary peak, a straight line is drawn from the initial point of the
peak to its intersection with the height (or its prolongation) so that Eq. (48) should

"y

. . dAaT, . =, .
be satisfied. Then, the ratlog— = tana = ar ? is found and ¢ is determined from

Eq. (49). In Fig. 2, the straight lines from the initial point of the peak are drawn so
that the areas of the sectors separated by the straight line inside the peak and outside
it should be equal; then A = A’. Actually, for a more accurate determination of ¢
one must slightly increase the slope of the straight line to satisfy the equality 48).

The described procedure can be applied for ideal reactions whose start coincides
with the direct reaction calculated theoretically by means of the kinetic equation
with the given values E and K. In reality, reactions of the dehydration type start at
higher temperatures, close to the equilibrium temperature defined by the pressure of
the gas phase in the calorimeter. As the result of this phenomenon (superheating),
the initial stage of the reaction proceeds more rapidly and within a narrower
temperature interval, leading to increased values determined for the activation
energy. Subsequently, as the temperature rises and the conditions are more removed
from the equilibrium conditions of dehydration, the process will be described more
and more by the kinetic equation of the direct reaction and the values determined
for E will decrease, approaching the true value (cf. Table 2).

One may, to a certain extent, take into account the phenomenon of superheating,
and thus increase the accuracy of determining the initial activation energy values by
drawing the line for constructing the auxiliary peak not from the initial point of the
recorded peak, but from a point to its left, at the assumed true temperature of the

4

? yalues will decrease and all the ¢ values

4
start of the reaction. Thereby, all the d ar

will increase (¢ — @), and correspondingly all the activation energies will decrease
(cf. formulae in Table 1). The ¢ values listed in Table 2 were determined by this
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latter method; it may be seen that the greatest differences between ¢ and ¢ appear in
the initial and final stages of the reaction: in the initial stage ¢ < ¢, and the use of ¢
instead of ¢ substantially reduces the higher values of the initial activation energies.
Comparing the course of changes in ¢ and ¢ as the reaction proceeds, one observes
the ¢ rapidly decreases to its minimum value at the inflexion point (7; = 77.3°,
¢; = 0.081 deg/s), and subsequently increases, whereas ¢ slowly decreases up to the
point of maximum rate of reaction, where ¢ and ¢ are very'close to one another,
and subsequently increases or remains constant. The introduction of the mean
heating rate concept and the consideration of the superheating phenomenon
permitted an increase in the accuracy of the kinetic determinations. However, as
may be seen from Table 2, even after these corrections the initial values of the
activation energy remain high, exceeding those of the medium and final stages by a
factor of 1.5 to 2. This might be explained either by the incomplete elimination of
the superheating phenomenon by means of the procedure described, or by assuming
that the found high values are true ones, characterizing the process of destruction of
the crystal lattice of the hydrate, while the lower values of the subsequent phases are
related mainly to the process of desorption of the water molecules from the surface
of the sample.

As may be seen from Table 2, the values of E depend on the value of #, in that with
increasing n, the value of E also increases, particularly towards the end of the
reaction, to the extent that the fraction (1 —a)™ decreases. For this reason it is
important to determine n as accurately as possible. Hence, the method of finding n
by means of Eqs (3), (5) and (7) of Table 1 must be rendered more accurate.

Method of finding the order of reaction n, taking into account
the difference between the true and mean heating rates ¢ and ¢

When one cannot assume that &=, the joint solution of the three-equation
system of the m point leads to the equality
Om _n[1-(1—a,)""]
(;m - n—1

=1-4,

By transformation of this equation, one obtains formula (3b) in Table 1. In an
analogous manner, one can obtain formulae for «; and «,. Figure 3 presents the
relationships n versus a;, a,, and a,, for the case ¢ = ¢ (curves 1,2 and 3) and for & # &
(curves I’,2’and 3’). The values a;, a,, and a, were found from the data in Table 2. As
seen in the Figure, taking into account that ¢ and ¢ are not identical and making
use of the formulae (3b), (6a) and (8a) in Table 1 results in a shift of the curves for ;
towards the left, and for «,, and «, towards the right.

The experimental values for a;, o, and a, are equal to 0.18, 0.57 and 0.74,
respectively. With these values, n= 1.5 corresponds to the corrected curves for «; and
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a,, and n=1.37 to the uncorrected curve for a,,. In this last case, the introduction of
the correction into formula (8b) leads to a sharp distortion of the shape of the curve
and to a substantial shift towards the right. Obviously, formula (8a) is very sensitive
to experimental errors, and small errors result in sharp distortion of the shape of the

n A
40

35
30
25
20

15

Fig. 3 Fraction reacted a vs. order of reaction n for the inflexion point (1, I’), the point of maximum rate of
reaction (2, 2’) and the top of the peak (3, 3’). Curves 1,2 and 3 refer to the case 0= @, and curves 1’,
2 and 3 1o the case 9 # ¢

Table 3 Calculated kinetic data on the dehydration of CuSQ, . 5H,O at the characteristic points of the

DTA curve
. . E, kJ/mol
7,°C B-10* ¢, °C/s E, kJ/mol from Eq. (la)  Eq. @7)
First dehydration step
i point 713 8.0 0.081 188.9 (Eq. 7a) 239.1 255.4
m point 84.0 175 0.174 1609  (Eq. 4a) 158.0 188.1
p point 88.0 2738 0.200 160.1 (Eq. 9a) 183.1 191.4
Second dehydration step
m point 112.6 25.7 0.097 494.1 (Eq. 4a) 476.5 3954
p point 115.0 345 0.200 203.1 (Eq. 9a) 4314 341.1
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curve. Therefore, this formula should be used with caution. All in all, one may state
that n= 1.5 is the most probable value for the reaction studied. The most probable
value of E = 38 kcal/mol water for medium temperatures (80-86°) corresponds to
this order of reaction. Table 3 lists the values for E calculated for the characteristic
points of the DTA curve via formulae (4a), (7a) and (9a), in comparison to the
corresponding values of E at these points, calculated via the formula for any single
point of the curve (1a) and also via the method of several points (Eq. 47). All in all,
satisfactory agreement is found between the different values of E, particularly for the
m point, presumably because at this point the difference between ¢ and ¢ is small.

The single-point method differs from the multipoint method insofar as the
heating rate ¢ or ¢ figures in all its formulae. Accurate determination of the values
@ and g is therefore of primary importance in the utilization of the single-point
method. Instead of one heating rate, ¢4, figuring in the known methods of non-
isothermal kinetics, a deeper and more accurate analysis demands the introduction
of three heating rates, differing from one another in general case: ¢,, ¢ and ¢.

Relationship between the shape of the peak
and the order of the reaction

It follows from the curves in Fig. 3 that with decreasing order of reaction (n—0) the
difference between a,, and «, decreases (a,,—a,), so that at the limit, at n=0, the
characteristic points of the curve will contract into one point at the top of the peai(,
and the top of the peak will become sharp (the exponential branch of the peak will
start at the top of the peak indicating the end of the reaction, since at the top of the
peak a=1). Hence, the sharper the top of the peak, the closer the order of the
reaction to zero, and the more indistinct the top of the peak, the more probable that
n is in the interval between 1 and 2. With increasing values of n, this criterion (the
distance between the a,, and «, points) becomes less and less sensitive (cf. Fig. 3).

To summarize, it may be stated that the experiments confirmed the theory
satisfactorily. This agreement between theory and practice is a consequence of the
satisfactory agreement of the isothermal sensor used in the experiments with the
centralized parameters of its theoretical gradientless model.
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Zusammenfassung — Eine gemeinsame Erorterung der grundlegenden kinetischen Gleichung der DTA
(Borchardt-Daniels-Methode) und der mathematischen Bedingungen fir charakteristische Punkte der
DTA-Kurve (Kissinger-Methode) ergibt ¢in System von drei Gleichungen mit drei Unbekannten
{(kinetischen Konstanten). Durch Losung dieses Gleichungssystems werden Formeln zur Berechnung der
kinetischen Konstanten von einem einzelnen Punkt der thermoanalytischen Kurve erhalten. Regeln zur
Bestimmung der charackteristischen und individuellen Punkte der DTA-Kurve werden angegeben. Das
Konzept der mittleren Aufheizgeschwindigkeit der Probe wird eingefithrt und eine graphische Methode
zur Bestimmung dieser GroBe beschrieben. Die Bezichung zwischen dem am charakteristischen Punkt
nicht umgesetzten Anteil (Peakform) und der Reaktionsordnung wird angegeben. Die Dehydratisierung
von Kupfersulfat-Pentahydrat wurde mittels der gradientenfreien DTA-Methode untersucht und eine
gute Ubereinstimmung zwischen den nach verschiedenen Berechnungsmethoden erhaltenen kinetischen
Konstanten festgestellt.

Pestome -—— COBMECTHOC PACCMOTPEHHE OCHOBHOIO KHMHeTHueckoro ypasHenus HATA (Meron
Bopuapara-/lannenbca) H METAMATHYECKHX YCIIOBHIl IUIA XapaxkTepHbix Todexk kpuBoit JTA (Meton
Kuccunkepa) NPUMBOAMT K CHCTEME TPEX YPAaBHEHHH C TpeMs HEH3BECTHHIMH (KMHETHYECKMMHM
KOHCTaHTaMH), peulasi KOTOPYIO MOXHO NOJIYYHTh GOPMYJIHI LIS PACHeTa KHHETHYECKHX KOHCTAHT 10
IaHHBIM 18 OHOH (711000#t) TOUKH TepMOaHAIMTHIECKOH KpUBOH. JaHbl npaBuia 14 ONpeaeieHus
xapakTepubix B ocoboil To4ek ra xpuBoii JTA. Beeneno noustue cpenmeil CKOPOCTH HarpeBauus
obpa3ua n onucan rpaduueckHii cnocod ee HAXOKICHUS. YCTAaHORICHA CBA3bL MEXILY JOJICH peareHra B
xapaktephoii Touke (popmoil nuxa) ¥ nopsakoM peakuun. Meroaom Gesrpapuentaoro ATA
HCCIIEN0BAHA PeaKiMA AETHIPATALHH ISTHBCAHOTO CY.Ib(AaTa MEAN ¥ IOKA3aHO XOPOLLee COBIAJICHHE
KMHETHUCCKHX KOHCTAHT PEAKIMHM, ONPEACICHHBIX PA3THYHBIMY PACUCTHLIMHA criocoGaMu.
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